以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

“曲中求直,蓄而后发,此谓借力打人,四两拨千斤也”。出自武术大家李亦畲的《五字诀》,用于说明太极之奥义。

今天介绍一个平面向量的极化恒等式,亦有“四两拨千斤”之妙。一个公式,六种用法,小公式,大力量!

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

求解数量积常用的方法基底法、坐标法和图形法(几何意义法),但有时其解题过程运算复杂、过程繁冗,经常导致错误。此时若能巧用极化恒等式,往往化繁为简,快速找到解题突破口。本文以近几年高考、模拟试题为例,对极化恒等式在数量积问题中的应用进行分类整理,有助于学生成绩快速提升!

定理:设a,b是平面内的两个向量,则有a·b= 1/4[(a b)²-(ab)²].

推导方式比较容易,只需将右侧平方公式打开即可!

几何意义:△ABC中,AD为中线。则有:

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

极化恒等式的几何意义

即:向量的数量积可转化为中线长与半底边长的平方差,揭示了三角形中线与边的关系,也可以理解为向量的数量积可表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的1/4。

特征:两个向量必须共起点,点D是两个向量夹角所对第三向量(这两个向量之差)上的中点。

题型一:三角形中数量积

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

【点评】利用极化恒等式构造方程组,从而求出数量积的值。对于从中线与底边这两个方向寻找基底向量的数量积问题,可以运用极化恒等式,把数量积转化为数量的运算,大大简化计算量!

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

【分析】此题是最值问题,标准答案是坐标法。计算量较大,此时利用极化恒等式直接将数量积转化,利用均值非常简单。

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以下是几道三角形模型适合极化恒等式关于数量积的练习题。用来给学生练习使用。

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

题型二 四边形中数量积

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

配套练习

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

题型三 圆形中数量积

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

配套练习

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

题型四 圆锥曲线中数量积

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

配套练习

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

题型五 立体几何中的数量积

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

配套练习

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

题型六 多动点数量积

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

【分析】此题初看是可以使用极化恒等式求解,但学生一经分析便遇到了两个动点的困难,成了许多学生的“拦路虎”,此题需要结合转化的思想,挖掘静态条件,从而进行突破。需要将向量BP转化为向量BC 向量CP处理。

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

【点评】遇到多动点的问题的时候,要考虑“化动为静”,逐渐将多动点转化为少动点,这是一个重要的解题思想。

配套练习

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题


以小博大,很多数学老师不知道的极化恒等式,解决6类平面向量问题

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至89291810@qq.com举报,一经查实,本站将立刻删除。
(0)
上一篇 2024年4月23日 上午11:20
下一篇 2024年4月23日 上午11:26

相关推荐

  • 安吉里之战

    安吉里之战,是二战期间发生在欧洲的一种著名战役,发生在1944年4月17日,是二战期间欧洲战场上最为激烈的一次战斗之一。这次战役是纳粹德国对盟军在欧洲战场上发起的一次大规模进攻,也…

    教育百科 2025年1月7日
  • 女学霸家法的制定最狠附加

    女学霸家法的制定最狠附加 作为一个女学霸,她的生活除了学习和考试之外,还有许多其他的事情需要处理。因此,她制定了一些家法来确保她的家庭成员能够在她的日程之外得到适当的照顾。 她决定…

    教育百科 2024年10月15日
  • 参军休学申请书怎么写

    参军休学申请书怎么写 尊敬的校领导: 我是一名大学生,因为个人原因,不得不提出休学申请。我深知这一决定会对我的学业和未来的职业发展产生一定的影响,但我认为这是目前最好的选择。在此,…

    教育百科 2024年11月4日
  • 厌学如何办理休学证明(厌学如何办理休学)

    厌学是一件令人苦恼的事情,但如果情况严重,可以考虑办理休学。以下是一些步骤,可以帮助您办理休学。 首先,您需要向学校提出休学申请。在申请时,您需要提供一些文件,例如成绩单、推荐信和…

    教育百科 2024年6月8日
  • 休学9月份能上学吗

    休学9月份能上学吗? 近年来,随着教育的不断发展和改革,越来越多的学生选择休学来应对各种突发情况。对于学生来说,休学是一个挑战,也是一个机会。在休学期间,学生可以更好地调整自己的状…

    教育百科 2024年7月17日
  • 儿子休学电子竞技能转学吗(儿子休学电子竞技)

    儿子休学电子竞技 我的儿子最近做出了一个让我十分惊讶的事情,他休学成为了一名电子竞技选手。我感到非常高兴,但同时也有些担忧。 我一直认为,电子竞技是一项非常有前途的运动,但我也清楚…

    教育百科 2024年4月9日
  • 学生休学一年

    学生休学一年 作为一名学生,我经历了许多挑战和困难,但最艰难的挑战之一是我选择了休学一年。这一决定在我生命中的某个时刻突然来临,让我不得不面对自己的内心世界和现实的生活。 当我进入…

    教育百科 2024年6月3日
  • 清入关后的十二位皇帝:顺治、嘉庆、乾隆帝、宣统帝、皇太极(清朝入关以后的帝位世袭表)

    清朝共历十二位皇帝。 ·入关之前的努尔哈赤、皇太极。 ·入关之后的顺治帝、康熙帝、雍正帝、乾隆帝、嘉庆帝、道光帝、咸丰帝、同治帝、光绪帝、宣统帝。 爱新觉罗皇太极。 于一六二六年继…

    教育百科 2024年4月15日
  • 鱼和周合在一起念什么

    鱼和周合在一起念什么 鱼和周合在一起,可以念“鱼周”。这个词组通常用于形容某些行为或情况类似于鱼类在水中游泳的状态。例如,在某些游戏中,玩家可能会遇到“鱼周”的情况,即他们被一群鱼…

    教育百科 2025年2月7日
  • 有关心理绘画作品说明

    心理绘画是一种新兴的艺术形式,通过将画笔和颜料放在画家的心中,来表现人类内心深处的情感和感受。这种艺术形式不仅能够帮助我们更好地了解自己,还可以让我们更好地理解和欣赏他人。 心理绘…

    教育百科 2024年12月5日

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注